查看原文
其他

美团网数据分析——到底有多少人知道这些餐厅?!

我叫丶钱小钱 Python爱好者社区 2019-04-07

作者:我叫丶钱小钱     Python爱好者社区专栏作者

简书专栏:https://www.jianshu.com/u/7e54016a5a06


前言


就是出于好玩,也没那么多精力做同行业的数据整合,只是想了解有哪些餐厅一辈子都吃不起、哪些店是当下热门、上海餐饮地理分布情况是怎样的、本文也就围绕着以上几个大点,开始美团数据探索之旅。



分析过程


整个过程一共分为三个步骤:


1. 数据来源(细节部分不做展开,代码已公开在GitHub上)

2. 基础分析(可以跳过,一些基本的数据分析方法、流程)

2. 进阶分析(先来一张热力图,具体内容请看第三章,所有店铺的空间数据分析)


当前层级:12级


1. 数据来源


利用爬虫技术获取了餐饮全分类、地域一级二级分类



在获取每个分类下面的标题、分数、评论、地址、人均、所有代金券数据



然后要把数据存入MySql数据库中




 

基础分析


先max,min看下异常数据,这些极值会影响最后统计结果,人均价格和评分有0的情况,对最后统计没有意义将这些数据进行剔除



对数据总量和剔除无效后的数据做一个占比展示,那么最后可以使用的数据26793条,占总量89%

from pyecharts import Liquid liquid = Liquid(title="样本数",subtitle='样本总量29876 剔除均价和评分为0的数据所剩的数量26793') liquid.add("Liquid", [0.89, 0.7, 0.5, 0.3], is_liquid_outline_show=False) liquid

好,接下来我们再来看下在这89%的数据中,我们按人均价格降序排解,到底哪几家会脱颖而出~

from pyecharts import Bar,Grid df = df.head(10) title = df['title'] avg_price =  df['avg_price'] avg_score = df['avg_score'] comment_num = df['comment_num'] bar = Bar(title="餐饮商家前十排行",subtitle='数据来源神秘组织:*团',width=800,height=400) bar.add("人均", title, avg_price, mark_point=["min", "max"],mark_line=["average"]) bar.add("评论数", title, comment_num,mark_point=["max"],is_label_show=True, xaxis_rotate=30) grid = Grid(height=500) grid.add(bar, grid_bottom="30%")


榜单前10的平均人均消费也达到了1126.4 RMB,其中,最贵的是“黄公子”人均 2665 RMB,不由得让我们对前10的商家起了兴趣,于是上了百度查看了一下


【黄公子】 人均 2665 RMB

隐藏在老式洋房里的一家人均千元的定制私房菜,仪式感十足,每天只接受10位顾客的预定,简友们谁家宽裕的可以带我去遛遛 =。=



【MOOK酒吧】人均 1044 RMB

什么是“当当当当,当当当?” 天哪! 还有漂亮的小姐姐...~哇靠,仿佛恋爱了... =。=



【洋房火锅】人均 901 RMB

火锅中的劳斯莱斯...A级和牛600~800,涮一片牛肉小两百...我的天...贫穷真的限制我了我的想象 =。=



看完最贵的,那么我们看下最热的,也就是评论数最多的



从数据表中可以看出,整个评论排行榜的前十均被 小吃快餐、自助餐 2类霸榜(其中还剔除了各种xxx分店),有趣的是前十店铺的地址大多都在 嘉定、奉贤、松江、曹路 这些地区都在上海外环以外。这里有些店铺可能存单刷单嫌疑。

from pyecharts import Bar,Grid sql3 = '''#sql3 select distinct a.sub_id,a.sub_name, b.poi_id,b.title,b.avg_price,b.avg_score,b.comment_num,b.address from meituan_classify_info as a inner join meituan_shop_info as b on a.sub_id = b.sub_id and a.class_type = b.class_type where a.class_type = 1 and a.sub_id not in(24,393,395) and b.avg_price <> 0 and b.avg_score <> 0 and CONCAT(b.sub_id,b.poi_id) not in ('6342030772','4050576755','6350576755','4052163162','2006068147006','5452800270','4087812358','6387812358','543311762') order by b.comment_num desc limit 10; '''df3 = pd.read_sql(sql3,conn) data = sorted(df3[['title','comment_num']].values ,key=lambda x: x[1],reverse=True) attr = [i[0] for i in data] val = [i[1] for i in data] bar = Bar() bar.add('comment_num', attr, val,is_label_show=True,xaxis_rotate=30) grid3 = Grid(height=500) grid3.add(bar, grid_bottom="30%")


【燕烤猪蹄店】人均 10 RMB

评论数量第一的竟然是家烤猪蹄店...!! 但为何以如此高的评论数位居榜首?是否存在刷榜行为? 对这块了解的请留言告知~(图3是本尊,喜欢的请点赞!)



好了,言归正传,分类不同,价格会相差很大,所以不能对所有类别进行全量统计(例如日料和小吃的价格就是天壤之别)下面的箱线图就很好的表达了这些分类的数据分布情况:

from pyecharts import Boxplot sql = '''select distinct sub_id,sub_name from meituan_classify_info where class_type = 1 and sub_id not in(24,393,395)''' df = pd.read_sql(sql,conn) sql2 = '''select distinct poi_id,avg_price,sub_id from meituan_shop_info where class_type = 1 and avg_price <> 0 and avg_score <> 0''' df2 = pd.read_sql(sql2,conn) x_axis = [] y_axis = [] for i in df.index:    sub_id = df.loc[i].values[0]    sub_name = df.loc[i].values[1]      avg_price = df2[df2['sub_id'] == sub_id ]['avg_price'].values    x_axis.append(sub_name)    y_axis.append(avg_price) boxplot = Boxplot("菜系数据分布情况") _yaxis = boxplot.prepare_data(y_axis)   # 转换数据 tp_dict = {k:v for k,v in zip(x_axis,_yaxis)} idx_tp = sorted([(max(v),k) for k,v in zip(x_axis,_yaxis)]) # 根据max排序 x_ax = [] y_ax = [] for i in idx_tp:    x_ax.append(i[1])    y_ax.append(tp_dict[i[1]]) boxplot.add('boxplot', x_ax,y_ax,is_datazoom_show=True, datazoom_type='both',xaxis_rotate=30) grid = Grid() grid.add(boxplot, grid_bottom="20%")


分类有很多种,要把菜系和食品的类别区分开(火锅可以是川菜也可以是日料,日料可以是自助也可以是海鲜)所以我们要把分类再细化,这里剔除食品分类,筛选出菜系类别(如:日料、川菜、粤菜、浙江菜、西北菜等)

from pyecharts import Pie sorted_df = sorted(df4[['sub_name','cnt']].values, key=lambda x:x[1],reverse=True) attr = [i[0] for i in sorted_df] val = [i[1] for i in sorted_df] pie = Pie("*团各大菜系店铺数", title_pos='center', width=800) pie.add("菜系", attr, val, center=[50, 50], is_random=True,        radius=[35,65], rosetype='radius',legend_orient='vertical',legend_pos='left',        is_legend_show=True, is_label_show=True)


川湘菜、浙江菜、日料、粤菜、韩料 位居前5,可以说统计结果跟现实中完全吻合,继续对数据进行下钻,接下来就来专门研究下日料的情况。


3. 进阶分析


在做日料店分布之前先来,上海市餐饮整体的一个分布情况,将数据库所有店铺的地址做清洗处理,然后百度地理经纬度坐标


将区域的每个坐标进行分组聚类,然后嵌入百度地图中(具体怎么嵌,请搜索百度地图SDK平台),就生成了下图 :

# 这里有几个知识点,地理坐标系一共分为几类 # 1.GPS设备获取的角度坐标,wgs84坐标 # 2.国测局坐标,gcj02坐标 # 3.百度经纬度坐标,bd09ll坐标 # 由于坐标信息都是经过加密处理,需要统一坐标才能够使用 sql = '''select round(lng,4),round(lat,4),count(*) * 10 from meituan_shop_map        group by round(lng,4),round(lat,4);''' cur.execute(sql) result = cur.fetchall() # 将坐标聚类,清洗 hotmap = [{"lng": float(i[0]), "lat": float(i[1]), "count": int(i[2])} for i in result]

15层级图中可以获取到很多信息,人口密集程度,商业繁华程度侧面就不说了,主要一下三点:


当前层级:15级


1. 明显的两大区域,分别是以静安寺为中心向南京西路延伸段、人民广场至南京路延申段,两大商业区餐饮商铺成均匀及延续分布,说明不仅店多而且分布广。


2. 次级区域分别有,上海火车站(不夜城)、中山公园、八佰伴、长寿路
说明这些地区也有相当部分市场。


3. 高热集中区域有,陆家嘴、环球港、中山公园、华东大学、马当路地铁站,铜川路等,这些高热特征他们都分布在地铁枢纽区域,地域小店铺分布密集。


12层级图中环以外区域,从10点方向逆时针主要有几个明显区域:


当前层级:12级


安亭镇、南翔镇、华漕镇、九亭镇、莘庄镇、曹行镇、周浦镇、张江镇、川沙镇、金桥镇、曹路镇,都是以人口较密区域成散点式分布


10层级图上海餐饮分布总览:


当前层级:10级


左下3个大片红色区域由外向内分别是:金山、奉贤、松江
右下大红色是:惠南
上面岛屿是:崇明


终于到了上海日料分布情况的环节


当前层级:12级


热力图呈现大面积黄色区域为古北、天山地区,那边日本企业较多,所以日料店也相对较多,其次就是静安寺、人名广场、徐家汇、八佰伴等商圈


好了,地理坐标系的分析就到此告一段落,接下来尝试找出最好吃的日料店,由于评论,价格,评分的数值不在一个维度中,那么我们先要对这些数值进行收敛处理,处理步骤如下:


1. 点评极值差异相当大,那么用log10去对评论进行收敛

2. 价格虽越贵越好吃的概率较大,但为了找到性价比最高的店,这里将价格作为降权处理

3. 评分最大5分最小0分,将0分提出,也同样对其进行收敛处理

4. 对3个指标的线性加权,再用算法进行归一化处理(var - min) / (max - min) 就得到了最后的评分

select    poi_id, title    ,(result - min_rst) / (max_rst - min_rst) as convergence    ,comment_num ,comnt ,avg_price ,price ,avg_score ,score, result , max_rst , min_rstfrom(    select        poi_id, title        ,comment_num        ,ifnull(log(20,comment_num),0) as comnt        ,avg_price        ,log10(avg_price) as price        ,avg_score        ,ifnull(log2(avg_score),0) as score        ,ifnull(log(20,comment_num),0) - log10(avg_price) + ifnull(log2(avg_score),0) as result        ,1 as inner_col    from meituan_shop_info    where sub_id = 20059 and avg_price <> 0) as x left join (    select    max(ifnull(log(20,comment_num),0) - log10(avg_price) + ifnull(log2(avg_score),0)) as max_rst    ,min(ifnull(log(20,comment_num),0) - log10(avg_price) + ifnull(log2(avg_score),0)) as min_rst    ,1 as inner_col    from meituan_shop_info    where sub_id = 20059 and avg_price <> 0) as y on x.inner_col = y.inner_col order by convergence desc

所有日料店加权计算后评分后,筛选出300RMB以上的日料店,吃货们自己去百度搜下吧,就不逐个介绍了


300-500日料推荐


【舞泽】人均 313 RMB
很多料理都是采用蒸的方法来烹饪的,「生冻雪蟹」「蒸海鲜」「帝王蟹」「茶泡饭」都是特色,这些我都是听说的,等赚到钱了一定要去吃一下~


舞泽

数据提取的一些简单脚本,初学者可以看下


Python爱好者社区历史文章大合集

Python爱好者社区历史文章列表(每周append更新一次)

福利:文末扫码立刻关注公众号,“Python爱好者社区”,开始学习Python课程:

关注后在公众号内回复“课程”即可获取:

小编的Python入门免费视频课程!!!

【最新免费微课】小编的Python快速上手matplotlib可视化库!!!

崔老师爬虫实战案例免费学习视频。

陈老师数据分析报告制作免费学习视频。

玩转大数据分析!Spark2.X+Python 精华实战课程免费学习视频。


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存